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Abstract . This paper deals with the numerical simulation of acoustic wave propagation in
shallow water by the boundary element method. It is assumed that the source of acoustic
disturbance is time-harmonic, the velocity of sound is constant and the medium in the absence
of perturbations is quiescent.
For regions of constant depth, the boundary condition on the free surface and bottom
boundaries is incorporated into the Green’s function, obtaining fundamental solutions in the
form of infinite series. Therefore, only irregular bottom boundaries need to be discretized. A
simple numerical test is included to validate the formulation.
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1.   INTRODUCTION

Increasing concern for coastal areas has, in recent years, focussed studies of ocean
acoustic wave propagation on shallow water environments. The most common numerical
techniques used to model underwater acoustic wave propagation are ray methods, normal
mode methods, and parabolic equation methods (Jensen et al., 1994). Ray methods are used in
deep water and are restricted to high frequencies; normal mode methods are best suited for
low frequencies but experience difficulties with domains that are both range and depth
dependent; parabolic equation methods neglect backscattering effects which are likely to be
important in very shallow water and near the shore (Grilli et al, 1998).

The present paper proposes a novel boundary element formulation for the numerical
modelling of shallow water acoustic propagation, in the frequency domain, over irregular
bottom topography. The model assumes a two-dimensional geometry, representative of
coastal regions, which have little variation in the long shore direction. The boundary element
method (BEM) model makes use of a Green’s function which directly satisfies the boundary
conditions at the free surface and the horizontal part of the bottom surface. Therefore, only
bottom irregularities need to be discretized.



The BEM formulation has been implemented and tested with several problems with
simple geometries. Results of some such tests are included to assess the accuracy of
numerical solutions.

2.   BOUNDARY ELEMENT METHOD

Two typical cases of 2D shallow water problems can be seen in Figure 1. The first
corresponds to those with one open boundary, representing ocean sections near coastal
regions, while the second corresponds to those with two open boundaries, representing ocean
sections far from the shore.

Figure 1 – General ocean sections for 2D acoustic propagation problems in shallow water

Consider the problem of acoustic wave propagation in a volume Ω of infinite extent,
shown in Figure 1. Assuming that this medium in the absence of perturbations is quiescent,
the velocity of sound is constant and the source of acoustic disturbance is time-harmonic, the
problem is governed by the Helmholtz equation (Kinsler et al,1982):
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where u is the velocity potential, αB  is the magnitude of the exciting source αE  located at

( )
αα ee yx , , S is the source point, Nes is the number of exciting sources, ( )SE ,αδ  is the Dirac

delta generalised function and cwk =  is the wave number, in which w is the natural
frequency and c is the velocity of sound in the medium.

The problem is subject to the following boundary conditions:
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a) Dirichlet condition
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b) Neumann condition

0)( =
∂
∂

X
n

u
on ΓCD and ΓB (2b)

c) Sommerfeld radiation condition at infinity
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in which FΓ , BΓ  and CDΓ  are the free surface, irregular bottom and constant depth bottom,

respectively (see Figure 1), n is the outward normal vector and 1−=i .
According to Green’s second identity, Eq. (1) can be transformed into the following

boundary integral equation (Chen and Zhou, 1992; Lacerda, 1997)
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where Γ is equal to CDBF Γ∪Γ∪Γ , S and X are the source and field points, respectively and

G(S,X) is the Green’s function. The functions u(X) and ( )Xnu ∂∂  represent the velocity
potential and its normal derivative. The coefficient c(S) depends on the boundary geometry at
the source point S. It is noted that the Green’s function implicitly satisfies the Sommerfeld
condition, therefore no discretization of the boundary at infinity is necessary.

Instead of using the fundamental solution (free-space Green’s function) of the
Helmholtz equation, modified Green’s functions which directly satisfy the boundary
conditions on FΓ  and CDΓ  are adopted. Therefore, only the irregular parts of the bottom

boundary, denoted by BΓ  in Figure 1, need to be discretized. These fundamental solutions are
developed using the method of images, and have the form of infinite series:
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where )()1(
0H  and )()1(

1H  are Hankel functions of the first kind, of order 0 and 1,

respectively. The modified Green’s function FG  exactly satisfies the boundary condition on
the free surface, but its normal derivative produces a small non-zero value at the bottom
boundary. Alternatively, function BG  produces a small non-zero value at the free surface but
its normal derivative exactly satisfies the boundary condition on the bottom. The above
combination, Eq. (4) and (5), was implemented in the present work.

Figure 2 – Distance from field point X to source point S and its reflections with respect to free
surface and bottom

The distances from the source point S and its reflections (see Figure 2) to field point X
are denoted as r, )1( Fr  and )( jF

mr  for FG . These distances can be written as:
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Equations (6) to (9) are also used for BG , but the letter F must be replaced by B and
vice-versa. In these equations, YF and YB are y co-ordinates of the free surface and bottom,
respectively.

Introducing the boundary conditions 0=u  on the free surface and 0=∂∂ nu  on the
bottom in Eq.(3) yields
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In order to solve Eq. (10) numerically, the boundary BΓ  is discretized into a number of
boundary elements whose geometries are modelled through shape functions and geometrical
nodal points. Over these elements, the velocity potential is interpolated as a function of the
element nodal points. Constant elements with linear geometry have been used in this work.

Applying the collocation method to Eq. (10) gives, in terms of an intrinsic co-ordinate η
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p = 1,…, nf

where nf is the total number of functional nodes, ne is the number of elements (for constant
elements nf = ne), pS  are selected points which coincide with the functional nodal points, qL

is the length of element qΓ  and qu  is the velocity potential at the point qX  which is the mid-

point of element qΓ .

Applying Eq. (11) to all functional nodal points yields

H u = b (12)

where vector b contains the contribution of the exciting sources and matrix H contains the
influence coefficients,
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where pqδ  is the Kronecker delta.

The number of terms necessary for evaluation of the series FG  and nGB ∂∂  is decided
based upon the following procedures:



a) To calculate the series FG :
The sum of terms for the m-th iteration is obtained as
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where )( jF
αE is the reflection )( jFE of the exciting source αE .
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where Tol is the tolerance, the value of which affects the accuracy of calculations.
b) To calculate the series nGB ∂∂ :
The integral in Eq. (13a) is computed numerically using Gaussian quadrature for either

the complete series or term by term. In the first case, the number of Gauss points must be the
same for terms with small and large r, increasing the computer time. A term by term
integration with different number of Gauss points has been used. In addition, only one Gauss
point is employed to integrate terms with source point reflection far from the bottom and free
surface. Therefore, the sum of terms for m-th iteration is obtained as
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where )( jB
pS is the reflection )( jBS of the source point pS .

Now, the process will be terminated when the influence of this sum )(B
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3.   APPLICATION

A simple application is presented here to validate the fundamental solutions through the
behaviour of the velocity potential along the bottom and at selected internal points.

This example simulates the propagation of acoustic waves into infinite shallow water
with a rectangular obstacle. The analysis is two-dimensional as shown in Figure 3. The deeper
and shallower depths are equal to h (in metre), and h/2, respectively. The velocity of sound
and the frequency are taken to be 1500 m/s and 7500 rad/s, respectively. The magnitude of the
exciting source is equal to 1.0 m2/s and it is located at xE = 10h and yE = h/2.

Figure 3 – Geometry for rectangular obstacle on the seabed

The boundary conditions and element discretization are depicted in Figure 4. A rigid
bottom is adopted, hence 0=∂∂ nu  for all functional nodal points. Only the rectangular
obstacle is discretized with constant elements of the same length in three different meshes.
The first has 5 and 10 elements on the vertical and horizontal sides, respectively, while the
others have 10/20 and 20/40 elements.

Figure 4 – Discretization and boundary conditions of the problem

Y

X

h/2

h

h

h/2

free surface

bottom

Y

X

0=
∂
∂

n

u
h

h



Figure 5 – Velocity potential at functional nodal points on the boundary of the rectangular
obstacle for different tolerances (Tol)

Figure 6 – Velocity potential at internal points along the horizontal line y = 0.8h
RO(elements): discretized rectangular obstacle only   B(elements): discretized bottom

Figure 5 shows the velocity potential at the functional nodal points on the rectangular
obstacle for different tolerances, using a mesh of 20 and 40 elements on the sides. As can be
seen, for the tolerance of 0.001 the curve is all smooth, whereas there are small local
perturbations for higher values of tolerance.
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In order to assess the accuracy of the results, the problem was also analysed with an
alternative BEM formulation in which the bottom boundary is fully discretized but the free
surface is eliminated using a single image source. The infinite bottom boundary was truncated
at the distances –500h and +500h.

To observe the behaviour of the velocity potential at internal points, analyses were
carried out using the BEM with infinite series and single image source. The first uses the
same tolerance of 0.001 for different meshes of 5/10, 10/20 and 20/40 elements on the
vertical/horizontal sides of the obstacle. The second analysis employs 8020 elements to
discretize the bottom, with 8000 elements along the infinite boundary (10 elements per
wavelength) and 5/10 on the obstacle. Results for the velocity potential at internal points
along the horizontal line hy 8.0=  and over the vertical hx 5.0−=  are presented in Figures 6
and 7.

Figure 7 – Velocity potential at internal points along the vertical line x = -0.5h
RO(elements): discretized rectangular obstacle only   B(elements): discretized bottom

4.   CONCLUSION

The infinite series employed as fundamental solutions were initially validated for simple
geometries for which analytic solutions are known. These series were then implemented in a
BEM computer program and produced excellent results for the test cases carried out. It is
observed that the choice of tolerance and number of nodes per wavelength affect the
behaviour of the velocity potential. Therefore, the value adopted for tolerance should be small
enough to avoid local perturbations of the results.

The convergence of the developed infinite series is very slow and studies have been
elaborated in order to improve upon this by finding out alternative series and modifying the
calculation of the asymptotic form of the Hankel function when source points are far from the
free surface and bottom.
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